
JavaScript
An Introduction

Prof. Yuhang Zhao
Computer Sciences, UW-Madison
adapted from Prof. Bilge Mutlu’s slides

CS 571 Building User Interfaces

Disclaimer

• This is not a comprehensive introduction to JS, so below are links to
great additional resources:
• MDN Web Docs
• DevDocs
• W3 Schools
• FreeCodeCamp

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://devdocs.io/javascript/
https://www.w3schools.com/js/default.asp
https://guide.freecodecamp.org/javascript/

What will we learn today?

• History and overview of web programming
• Syntax, JS for Java developers
• Interacting with user-facing elements

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Live Q&A
Reminder

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

What will you need?

• A modern web browser (developer tools enabled)
• A source-code editor (e.g., Visual Studio Code, Atom, Sublime Text)

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

A little bit of history

• JavaScript (JS) was developed by Netscape Communications (Brendan
Eich) in 1995 to make the web more dynamic – a “glue language” for
HTML – Marc Andreesen
• Mocha > LiveScript > JavaScript > Jscript (Microsoft)
• Client-side and server-side JS (e.g., Node.js)
• Standardization through ECMAScript (ES)

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

How does the “front-end” of the web work?

• A three-layered cake:
• HTML: Base cake layer
• CSS: Icing
• JS: Clown hidden in the cake

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Source: The three layers of designing for the web

https://www.thoughtco.com/three-layers-of-web-design-3468761

Let’s see an example

Consider the following very simple HTML page

<!DOCTYPE html>
<html>
<head>
</head>
<body>

<h1>My Web Page</h1>

<p>Welcome to my webpage! You can see my resume below. </p>

<button>Download Resume</button>

</body>
</html>

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Let’s improve its appearance. Within head then style:
body {background-color: lightgrey;}
h1 {

color: darkslategray;
text-align: center;
font-family: 'Gill Sans', 'Gill Sans MT', Calibri, 'Trebuchet MS', sans-serif}

p {
color: darkolivegreen;
margin-left: 50px;
margin-right: 50px;
font-family: 'Gill Sans', 'Gill Sans MT', Calibri, 'Trebuchet MS', sans-serif}

button {
background-color: darkolivegreen;
border: none;
color: white;
padding: 15px 32px;
text-align: center;
display: inline-block;
font-size: 16px;
margin-left: 50px; margin-right: 50px;
font-family: 'Gill Sans', 'Gill Sans MT', Calibri, 'Trebuchet MS', sans-serif}

• HEX triplet, RGB triplet
• Majors -> tone; minors -> shade
• Values 0-9-A-F (16 values)
• Search for “hex color”

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Detour: Specifying Color

Source: Nitish Khagwal

https://medium.muz.li/hex-color-codes-27cd0a37c3ce

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Let’s add some minor interactivity. Within head and then script:

function myFunction() {
document.getElementById(“message”).innerHTML = “Downloading…”;

}

Then within body:
<button onclick=“myFunction()”>Download Resume</button>
<p id=“message”></p>

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Quiz 1

• Complete the Canvas quiz

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

https://canvas.wisc.edu/courses/273395/quizzes/310038

How does JS interact with the page?

• Internal JS
• External JS
• Inline JS handler

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Internal JS

• Internal JS is included within the HTML inside <script> tags.
<head>

<script>
// JS goes here

</script>
</head>

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

External JS

• Create a script.js file, which will contain your JS code, and include the
file within head:

<script src=“script.js” defer></script>

Here, defer indicates that script.js should be executed after the page is
parsed.

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Inline JS handlers

<button onclick=“myFunction()”>Download Resume</button>
Pro Tips 1: In general, inline JS handlers results in inefficient and
unorganized code.

Pro Tips 2: Different loading strategies are used for internal JS (listening
for DOMContentLoaded event; including script after the page content)
and external JS (defer and async attributes).

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

How is JS interpreted?

• All modern browsers have a JS engine, e.g., v8, SpiderMonkey
• Node.js encompasses v8 within a C++-based environment to compile

JS outside the browser
• In this class, we will exclusively work within the browser environment

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Source: List of ECMAScript engines; Node.js

https://en.wikipedia.org/wiki/List_of_ECMAScript_engines
https://en.wikipedia.org/wiki/Node.js

How do I start JS development?

• In the browser – best for testing ideas, code, etc.
• In a coding environment – best for application development

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Running JS in the browser

Ctrl-Shift-J or Command-Option-J

Try out:
console.log(“On Wisconsin!”)

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Running JS in an online sandbox

• https://codepen.io/
• https://codesandbox.io/
• https://glitch.com/
• https://playcode.io/
• https://jsfiddle.net/
• https://jsbin.com/

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

https://codepen.io/
https://codesandbox.io/
https://glitch.com/
https://playcode.io/
https://jsfiddle.net/
https://jsbin.com/

Running JS in a coding environment

• If you are using VS Code, install Live
Server, start a simple HTML file, and
try adding:

<script>alert(“On Wisconsin”);</script>

http://127.0.0.1:5500/index.html

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

http://127.0.0.1:5500/index.html

What is this “TypeScript” I hear about?

• Definition: TypeScript is a strict syntactical superset of JS developed to
enable the development of large-scale applications and to add static
typing (ensuring type safety).
• Alternatives: CoffeeScript, LiveScript, Babel
• Preprocessors compile code written in TS, CS, LS, and Babel into JS

that can be executed by a JS engine.

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

TypeScript code:
var peerMentors: string[] = [‘Yuren’, ‘Ilkyu’]
var firstPeerMentor: string = peerMentors[0];

Compiles into JS code:
var peerMentors = [‘Yuren’, ‘Ilkyu’];
var firstPeerMentor = peerMentors[0];

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Syntax, JS for Java Developers

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Variables

• Definition: Variables are containers that hold reusable data
• ES6 defines seven standard data types: numbers, string, boolean, null,

undefined, symbol, object
• JS is a dynamically, or loosely, typed language, and data type is inferred from

the declaration and can be changed over time

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Consider the following three variable containers:

var userName = “Jack”;
let username = “Jill”;
const interestRate = 4.25;
• var and let work identically but have different scopes
• var declares a variable that is globally accessible
• let declares a variable that is only accessible within the current block,

e.g., a for loop
• const declares a variable that is unchangeable

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

• JS has a flexible and powerful declaration syntax, for example:
var firstName = “Cole”, lastName = “Nelson”, age = 26;
var firstName = ”Cole”,
lastName = “Nelson”,
age = 26;
var fullName = firstName + “ “ + lastName;

• Because JS is dynamically typed, you can query the data type:
typeof firstName;
“string”

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Quiz 2

• Complete the Canvas quiz

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

https://canvas.wisc.edu/courses/273395/quizzes/310050

Objects

• Definition: Objects are unordered collections of related data of
primitive or reference types – defined using key: value statements

var teachingAssistant = {
firstName: “John”,
lastName: “Balis”,
age: 24

}
teachingAssistant;
> {firstName: “John”, lastName: “Balis”, age: 24}

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Object Properties

• Different notations to access object properties:
teachingAssistant.lastName;
> “Balis”

teachingAssistant[”lastName”];
> “Balis”

let userFocus = “lastName”;
teachingAssistant[userFocus];
>”Balis”

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Arrays

• Definition: An array is a variable that contains multiple elements.
• Like variables, arrays are also dynamically types.
• JS arrays can contain elements of different types.

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

var myGradStudents = [“Andy”, “David”, “Laura”];
myGradStudents[3] = “Nathan”;
myGradStudents:
> [”Andy”, “David”, “Laura”, “Nathan”]

myGradStudents[4] = 4;
myGradStudents;
> [“Andy”, “David”, “Laura”, “Nathan”, 4]

Functions

• Definition: A procedure that includes a set of statements that
performs a task or calculates a value. The function must be defined
and called within the same scope.

Functions can be used to perform specific tasks.

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

function fahrenheitToCelcius(temperature) {
return (temperature – 32) * 5/9;

}
fahrenheitToCelcius(77)
> 25

Source: Functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions

Functions can also serve as methods associated with
objects.

var lastestWeatherReport = {
temperature: 77,
humidity: 64,
wind: 6,
celcius: function() {

return (this.temperature – 32) * 5/9;
}

}
latestWeatherReport.temperature;
> 77
latestWeatherReport.celcius();
> 25

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Anonymous functions

• Definition: Anonymous functions are declared without named
identifiers that refer to them.

Form 1:

Form 2 (“arrow” functions):

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

var firstItem = function (array) {return array[0]};

var firstItem = array => return array[0];

Source: Zen Dev

https://zendev.com/2018/10/01/javascript-arrow-functions-how-why-when.html

Declared vs. Anonymous

• Advantages of declared and anonymous functions are:

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Source: Scott Logic

https://blog.scottlogic.com/2011/06/10/javascript-anonymous-functions.html

Conditionals

• Definition: Conditionals allow the code to make decisions and carry
out different actions depending on different inputs.

Three types:
1. if… else statements
2. switch statements
3. Ternary operator

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Comparison and logical operators

• === and !== (identical to/not identical objects)
• == and != (identical to/not identical values)
• < and > (less/greater than)
• <= and => (less/greater than or equal to)
• && (AND)
• || (OR)

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Example strict equality comparison:
var ta1 = 1;
var ta2 = “1”
console.log(ta1 === ta2);
>false

Example abstract equality comparison:

var ta1 = 1;
var ta2 = “1”;
console.log(ta1 == ta2);
>true

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Pro Tip: In JS, any value that is not false, undefined, null,
0, NaN, or “” returns true.

var currentMember = false;
if (currentMember) {

para.textContent = ‘Sign In’;
} else {

para.textContent = ‘Sign Up’;
}
>Sign up
We don’t need to explicitly specify === true.

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

if … else statements

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

<select id=“sign”>
<option value=“ “>--Make a choice--</option>
<option value=”Illinois”>Illinois</option>
<option value=“Indiana”>Indiana</option>

…

var select = document.querySelector(‘select’);
var para = document.querySelector(‘p’);

select.addEventListener(‘change’, setSign);

function setSign() {
var choice = select.value;
var messageText = ‘Current mortgage loan rate is ’;

// Data from https://www.astrology.com/horoscope/daily.html
if (choice === ‘illinois’) {

para.textContent = messageText + 4.50 + ‘%’;
} else if (choice === ‘Indiana’) {

para.textContent = messageText + 3.50 + ‘%’;
…

See in CodePen

https://www.astrology.com/horoscope/daily.html
https://codepen.io/yuhangz/pen/yLXXaQo

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

var select = document.querySelector(‘select’);
var para = document.querySelector(‘p’);

select.addEventListener(‘change’, setSign);

function setSign() {
var choice = select.value;
var messageText = ‘Current mortgage loan rate is ’;
if (choice === ‘illinois’) {

para.textContent = messageText + 4.50 + ‘%’;
} else if (choice === ‘Indiana’) {

para.textContent = messageText + 3.50 + ‘%’;
…

Ternary operator

• Definition: An operator that tests a condition and returns one output
if true and another if it is false.

Prototype:
(condition) ? doSomething : doSomethingElse;

Example:
(currentMember) ? para.textContent = ’Sign In’ : para.textContent = ‘Sign Up’;

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Looping

• Definition: Executing one or more statements repeatedly until certain
conditions are met. To express a loop, we need a counter, an exit
condition, and an iterator.

A for loop:
for (initializer; exit-condition; final-expression){

// statement
}

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

While and do … while loops:

initializer
While (exit-condition) {

//statement
final-expression

}

initializer
do {

//statement
final-expression

} while (exit-condition)

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Exiting loops, skipping iterations

for (initializer; exit-condition; final-expression){
// statement
if (special-condition-exit) {break;}
if (special-condition-skip) {continue;}
// statement

}

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Source: Baeldung

https://www.baeldung.com/java-continue-and-break

Quiz 3

• Complete the Canvas quiz

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

https://canvas.wisc.edu/courses/273395/quizzes/310043

Interacting with User-facing Elements

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Document Object Model

• Definition: Document Object Model
(DOM) translates an HTML or XML
document into a tree structure
where each node represents an
object on the page.
• This is great news for us, because JS

can interact with this structure.

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Wikipedia: DOM

https://en.wikipedia.org/wiki/Document_Object_Model

DOM Programming Interface

• Objects: HTML elements, such as a paragraph of text.
• Property: Value that can get or set, such as the id of an element
• Method: An action we can take, such as adding or deleting an HTML

element

For JS to interact with user-facing elements, we first need to access
them…

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Accessing HTML elements

• Most common way of accessing content is getElementById().
<p id=“userName”></p>
<script>

document.getElementById(“userName”).innerHTML = “Cole Nelson”;
</script>

We can also find elements using tag name, class name, CSS selectors.

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Manipulating HTML elements

• Changing content:
document.getElementById(“userName”).innerHTML = “Cole Nelson”;

• Changing attributes:
document.getElementById(“userImage”).src = “Headshot.png”;
document.getElementById(“userName”).style.color = “red”;

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

DOM Events

• Now things are heating up! 🔥
• DOM provides access to HTML events: onclick, onload, onunload,

onchange, onmouseover, onmouseout, onmousedown, onmouseup,
formaction.
• Three ways of registering functions to events:
• Inline event handlers
• DOM on-event handlers
• Event listeners

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

Inline Event Handlers

• Prototype

• Example:

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

<button id=”id-name” onclick=“function()”>Button name</button>

<p id=“currentTemp”>7</p>

<button id=”convertButton” onclick=“function()”>Convert to Celcius</button>

<script>

function convertTemp() {

document.getElementById(“currentTemp”).innerHTML

= (document.getElementById(“currentTemp”).innerHTML – 32) * 5/9; }

</script>

DOM On-event Handlers

• Prototype

• Example:

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

<script>

document.getElementById(“button”).onclick = doSomething;

</script>

<p id=“currentTemp”>7</p>

<button id=”convertButton”>Convert to Celcius</button>
<script>

document.getElementById(“convertButton”).onclick = convertTemp;
function convertTemp() {

document.getElementById(“currentTemp”).innerHTML
= (document.getElementById(“currentTemp”).innerHTML – 32) * 5/9; }

</script>

Using Event Listeners

• Prototype

• Example:

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

document.getElementById(“button”).addEventListener(“click”, function() { doSomething(); });

<p id=“currentTemp”>7</p>

<button id=”convertButton”>Convert to Celcius</button>
<script>

document.getElementById(“convertButton”).addEventListener(“click”, convertTemp);
function convertTemp() {

document.getElementById(“currentTemp”).innerHTML
= (document.getElementById(“currentTemp”).innerHTML – 32) * 5/9; }

</script>

Pro Tip: When we add event listeners, we are assigning a
function to a handler for the handler to execute the
function when needed, not calling the function right there.

• Do not:

• Do:

or

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

document.getElementById(“button”).addEventListener(“click”, doSomething());

document.getElementById(“button”).addEventListener(“click”, function(){doSomething();});

document.getElementById(“button”).addEventListener(“click”, doSomething);

Pro Tip: Listeners are the most efficient way to manage
events

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

<button>A</button>
<button>B</button>
<button>C</button>

<script>
document.body.addEventListener(“click”, event => {

if (event.target.nodeName == “BUTTON”) {
console.log(“Clicked”, event.target.textContent);

}
});

</script>

See in CodePen
Eloquent JavaScript

https://codepen.io/yuhangz/pen/ExXXNJx
https://eloquentjavascript.net/15_event.html

Quiz 4

• Complete the Canvas quiz

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

https://canvas.wisc.edu/courses/273395/quizzes/310051

What did we learn today?

• History and overview of web programming
• Syntax, JS for Java developers
• Interacting with user-facing elements

Building User Interfaces | Professor Zhao | Lecture 2 -
Javascript 1: An Introduction

