
Building User Interfaces

React 4
Advanced Concepts
Professor Yuhang Zhao
© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts1



What we will learn today?

— Introducing Hooks

— Optimizing performance in React

— Advanced asynchronous updating

— APIs for advanced interaction

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts2



Introducing Hooks

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts3



Motivation

— Classes are confusing

— Complex class components are hard to understand

— It's hard to reuse stateful logic between components

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts4



What is a Hook?

Definitions: Hooks are functions that let you "hook into" React state 
and lifycycle features from function components. Hooks don't work 
inside classes — they let you use React without classes. 

function Welcome(props) {
  return <h1>Hello, {props.name}</h1>;
}
const element = <Welcome name="Professor Zhao" />;
ReactDOM.render(element, document.getElementById('root'));

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts5



How to use Hooks?

— Build-in Hooks

— useState, useEffect, etc.

— Custom Hooks

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts6



State Hook

useState is a Hook that lets you add React state to function 
components. 

When should I use a State Hook?

If you need some state in a function componenet, you can use State 
Hook inside the function component!

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts7



How to use State Hook?

Import the useState Hook from React:

import {useState} from 'react';

Declare state:

const [count, setCount] = useState(0);

useState() takes in one argument: the intial state, and returns a pair 
of values: the current state, and a function that updates it. 

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts8



Class component

class Example extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      count: 0
    };
  }

  render() {
    return (
      <div>
        <p>You clicked {this.state.count} times</p>
        <button onClick={() => 
        this.setState({ count: this.state.count + 1 })}>
          Click me
        </button>
      </div>
    );
  }
}

Function component with 
Hook

function Example() {
  // Declare a new state variable "count"
  const [count, setCount] = useState(0);

  return (
    <div>
      <p>You clicked {count} times</p>
      <button onClick={() => setCount(count + 1)}>
        Click me
      </button>
    </div>
  );
}

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts9



Declare multiple state variables

[something, setSomething] = useState(value)

function ExampleWithManyStates() {
  // Declare multiple state variables!
  const [age, setAge] = useState(42);
  const [fruit, setFruit] = useState('banana');
  const [todos, setTodos] = useState([{ text: 'Learn Hooks' }]);
  ...

  }

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts10



Effect Hook

useEffect lets you perform side effects in function components. 

When should we use effect hook?

If you want to involve side effects (e.g., data fetching, setting up a 
subscription, manually changing the DOM) in a function 
component, you can use Effect Hook!

It's a combination of componentDidMount, componentDidUpdate, and 
componentWillUnmount.

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts11



How to use Effect Hook?

useEffect(function);

By using useEffect, you tell React that your component needs to do 
something a!er render. React will remember the function you 
passed in, and call it a!er performing the DOM updates (e.g., 
mounting, updating, unmounting). 

 useEffect(() => {
    document.title = `You clicked ${count} times`;
  });

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts12



Class using lifecycle methods

class Example extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      count: 0
    };
  }

  componentDidMount() {
    document.title = `You clicked ${this.state.count} times`;
  }
  componentDidUpdate() {
    document.title = `You clicked ${this.state.count} times`;
  }

  render() {
    return (
      <div>
        <p>You clicked {this.state.count} times</p>
        <button onClick={() => 
        this.setState({ count: this.state.count + 1 })}>
          Click me
        </button>
      </div>
    );
  }
}

Function with Effect Hook

function Example() {

  const [count, setCount] = useState(0);

  useEffect(() => {
    document.title = `You clicked ${count} times`;
  });

  return (
    <div>
      <p>You clicked {count} times</p>
      <button onClick={() => setCount(count + 1)}>
        Click me
      </button>
    </div>
  );
}

Example in stackblitz.

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts13

https://stackblitz.com/edit/component-lifecycle-methods-lsla4a


Rules of Hooks

— Only call Hooks from React functions, not regular JavaScript 
functions

— Only call Hooks at the top level, not inside loops, conditions, or 
nested functions

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts14



More about Hooks

— Building your own Hook

— Hook API Reference

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts15

https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-reference.html


Advanced Asynchronous 
Updating

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts16



Getting data within componentDidMount()

Ideally, we want to interact with the server in the following way. 
What would happen here?

componentDidMount() {
  const res = fetch('https://example.com')
  const something = res.json()
  this.setState({something})
}

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts17



But we end up following up fetch() with a series of then()s.

componentDidMount() {
  fetch('https://example.com')
    .then((res) => res.json())
    .then((something) => this.setState({something}))
}

then() allows us to program asynchronously (by allowing 
componentDidMount() to wait for the Promise to be resolved). Although, 
this syntax can be unintuitive and not readable.

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts18



Programming asynchronously using async/await

async/await provides syntax to program asynchronously in an 
intuitive and clean way.

Usage:

— async function() denotes that the function() will work 
asynchronously.

— await expression enables the program to wait for expression to be 
resolved.

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts19



Example:9

async componentDidMount() {
  const res = await fetch('https://example.com')
  const something = await res.json()
  this.setState({something})
}

9 See in CodePen

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts20

https://codepen.io/yuhangz/pen/porJmez


async Functions10

Any function can be asynchronous and use async. Useful where the 
function has to wait for another process.

async addTag(name) {
    if(this.state.tags.indexOf(name) === -1) {
        await this.setState({tags: [...this.state.tags, name]});
        this.setCourses();
    }
}

10 See example in CodePen

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts21

https://codepen.io/yuhangz/pen/MWvWZad?editors=0011


Optimizing Performance in 
React

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts22



Why do we need to worry about 
performance?1

As the complexity of your application 
scales, performance will necessarily 
degrade.

Why? And what do we do about it?

1 Image Source: Noam Elboim

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts23

https://medium.com/myheritage-engineering/how-to-greatly-improve-your-react-app-performance-e70f7cbbb5f6


2

2 Image Source: William Wang

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts24

https://www.toptal.com/react/optimizing-react-performance


2

2 Image Source: William Wang

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts25

https://www.toptal.com/react/optimizing-react-performance


2

2 Image Source: William Wang

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts26

https://www.toptal.com/react/optimizing-react-performance


Why does React do that?

That's how React works!

We discussed in React 1 that the diffing within Virtual DOM—
reconciliation—is what makes it fast, but when things are scaled up, 
continuous diffing and updating affects performance.

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts27



How do we know that?

Performance tools: React provides a powerful library, react-addons-
perf,3 for taking performance measurements.

import Perf from 'react-addons-perf';
Perf.start()
// Our app
Perf.stop()

3 ReactJS.org: Performance tools

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts28

https://reactjs.org/docs/perf.html%23printwasted


Useful Perf methods

— Perf.printInclusive() prints overall time taken.

— Perf.printExclusive() prints time minus mounting.

— Perf.printWasted() prints time wasted on components that didn't 
actually render anything.

— Perf.printOperations() prints all DOM manipulations.

— Perf.getLastMeasurements() prints the measurement from the last 
Perf session.

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts29



Perf.printInclusive() and Perf.printWasted() output:4

4 Image Source: Daniel Park

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts30

https://medium.com/@dpark/using-reacts-perf-with-react-addons-perf-77ed260f2df0


We can also visualize the performance of all components:5 6

6 Image source

5 An advanced guide to profiling performance using Chrome Devtools

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts31

https://reactjs.org/docs/optimizing-performance.html
https://calibreapp.com/blog/react-performance-profiling-optimization/


How to eliminate time wasted?

By avoiding reconciliation, i.e., only rendering when there is actually 
an update, using shouldComponentUpdate().

Definition: For components that implement shouldComponentUpdate(), 
React will only render if it returns true.

function shouldComponentUpdate(nextProps, nextState) {
    return true;
}

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts32



7

7 Image source

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts33

https://reactjs.org/docs/optimizing-performance.html


An example of shallow comparison to determine whether the 
component should update:

shouldComponentUpdate(nextProps, nextState) {
    return this.props.color !== nextProps.color;
}

Let's see an example from ReactJS.org...

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts34

https://reactjs.org/docs/optimizing-performance.html


class CounterButton extends React.Component {
  constructor(props) {
    super(props);
    this.state = {count: 1};
  }

  shouldComponentUpdate(nextProps, nextState) {
    if (this.props.color !== nextProps.color) {
      return true;
    }
    if (this.state.count !== nextState.count) {
      return true;
    }
    return false;
  }

  render() {
    return (
      <button
        color={this.props.color}
        onClick={() => this.setState(state => ({count: state.count + 1}))}>
        Count: {this.state.count}
      </button>
    );
  }
}

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts35



Detour: Shallow vs. Deep Comparison8

Shallow Comparison: When each 
property in a pair of objects are 
compared using strict equality, e.g., 
using ===.

Deep Comparison: When the 
properties of two objects are recursively 
compared, e.g., using Lodash isEqual().

8 Image source

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts36

https://lodash.com
https://miro.medium.com/max/390/0*RGt-o4ovYiIt_9nS


React.PureComponent

React provides a component called PureComponent that implements 
shouldComponentUpdate() and only diffs and updates when it returns 
true.

Note that any child of PureComponent must be a PureComponent.

Let's see an example from ReactJS.org...

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts37

https://reactjs.org/docs/optimizing-performance.html


class CounterButton extends React.PureComponent {
  constructor(props) {
    super(props);
    this.state = {count: 1};
  }

  render() {
    return (
      <button
        color={this.props.color}
        onClick={() => this.setState(state => ({count: state.count + 1}))}>
        Count: {this.state.count}
      </button>
    );
  }
}

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts38



Other Ways of Optimizing Performance

— Not mutating objects (see The Power of Not Mutating Data, Immer, 
immutability-helper)

— Using immutable data structures (see more on data immutability)

— Using the production build of React

— Many more...

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts39

https://reactjs.org/docs/optimizing-performance.html
https://github.com/immerjs/immer
https://github.com/kolodny/immutability-helper
https://redux.js.org/faq/immutable-data
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html


Further Reading on React Performance

— 21 Performance Optimizations for React Apps

— Efficient React Components: A Guide to Optimizing React 
Performance

— ReactJS.org: Optimizing Performance

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts40

https://www.codementor.io/blog/react-optimization-5wiwjnf9hj
https://www.toptal.com/react/optimizing-react-performance
https://www.toptal.com/react/optimizing-react-performance
https://reactjs.org/docs/optimizing-performance.html


APIs for advanced interaction

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts41



Interaction Libraries

— react-beautiful-dnd: Examples

— react-smooth-dnd: Demo

— React DnD: Examples

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts42

https://github.com/atlassian/react-beautiful-dnd
https://react-beautiful-dnd.netlify.com/?path=/story/single-vertical-list--basic
https://github.com/kutlugsahin/react-smooth-dnd
https://kutlugsahin.github.io/smooth-dnd-demo/
http://react-dnd.github.io/react-dnd/about
http://react-dnd.github.io/react-dnd/examples


Component Libraries

— Material UI

— Material Kit React: Demo

— Rebass

— Grommet

— React Desktop : Demo

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts43

https://github.com/mui-org/material-ui
https://www.creative-tim.com/product/material-kit-react/?partner=91096
https://demos.creative-tim.com/material-kit-react/%23/
https://rebassjs.org
https://v2.grommet.io
http://reactdesktop.js.org
https://reactdesktop.js.org/demo/


Managing Data

— React Virtualized: Demo

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts44

https://github.com/bvaughn/react-virtualized/tree/master/docs%23documentation
https://bvaughn.github.io/react-virtualized/%23/components/List


A few pieces of advice for assignments

— Start early

— Google (or Bing, DuckDuckGo, etc.) is your friend

— E.g., even if we cover correct syntax in class, slides are not 
useful for debugging

— Use debugging tools

— Compiler errors, React Development Tools, console.log()

— Come to office hours (early)

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts45



What did we learn today?

— Introducing Hooks

— Optimizing performance in React

— Advanced asynchronous updating

— APIs for advanced interaction

© Building User Interfaces | Professor Zhao | Lecture 11: React 4 — Advanced Concepts46


